A note on simultaneous Diophantine approximation on planar curves
نویسندگان
چکیده
منابع مشابه
A note on simultaneous Diophantine approximation on planar curves
Let Sn(ψ1, . . . , ψn) denote the set of simultaneously (ψ1, . . . , ψn)–approximable points in Rn and S∗ n (ψ) denote the set of multiplicatively ψ–approximable points in Rn. Let M be a manifold in Rn. The aim is to develop a metric theory for the sets M∩Sn(ψ1, . . . , ψn) and M∩S∗ n (ψ) analogous to the classical theory in whichM is simply Rn. In this note, we mainly restrict our attention to...
متن کاملSimultaneous Diophantine Approximation on Planar
Let C be a non-degenerate planar curve. We show that the curve is of Khintchine-type for convergence in the case of simultaneous approximation in R 2 with two independent approximation functions; that is if a certain sum converges then the set of all points (x, y) on the curve which satisfy simultaneously the inequalities qx < ψ1(q) and qy < ψ2(q) infinitely often has induced measure 0. This co...
متن کاملA Note on Simultaneous Diophantine Approximation in Positive Characteristic
In a recent paper, Inoue and Nakada proved a 0-1 law and a strong law of large numbers with error term for the number of coprime solutions of the one-dimensional Diophantine approximation problem in the field of formal Laurent series over a finite base field. In this note, we generalize their results to higher dimensions.
متن کاملA note on Diophantine approximation
Given a set of nonnegative real numbers Λ= {λi}i=0, a Λ-polynomial (or Müntz polynomial) is a function of the form p(x)=ni=0 aizi (n∈N). We denote byΠ(Λ) the space of Λ-polynomials and byΠZ(Λ) := {p(x)=ni=0 aizi ∈Π(λ) : ai ∈ Z for all i≥ 0} the set of integral Λ-polynomials. Clearly, the sets ΠZ(Λ) are subgroups of infinite rank of Z[x] wheneverΛ⊂N, #Λ=∞ (by infinite rank, wemean that the real ...
متن کاملA Note on Metric Inhomogeneous Diophantine Approximation
An inhomogeneous version of a general form of the Jarn k-Besicovitch Theorem is proved. Dedicated to Professor F. Chong for his 80th birthday 1. Introduction In some respects, inhomogeneous Diophantine approximation is rather diierent from homogeneous Diophantine approximation. Results in the former, where the additional variables ooer extràdegrees of freedom', are sometimes sharper or easier t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 2006
ISSN: 0025-5831,1432-1807
DOI: 10.1007/s00208-006-0055-1